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Abstract

Photorealistic frontal view synthesis from a single face

image has a wide range of applications in the field of face

recognition. Although data-driven deep learning methods

have been proposed to address this problem by seeking so-

lutions from ample face data, this problem is still challeng-

ing because it is intrinsically ill-posed. This paper proposes

a Two-Pathway Generative Adversarial Network (TP-GAN)

for photorealistic frontal view synthesis by simultaneously

perceiving global structures and local details. Four land-

mark located patch networks are proposed to attend to local

textures in addition to the commonly used global encoder-

decoder network. Except for the novel architecture, we

make this ill-posed problem well constrained by introducing

a combination of adversarial loss, symmetry loss and iden-

tity preserving loss. The combined loss function leverages

both frontal face distribution and pre-trained discriminative

deep face models to guide an identity preserving inference

of frontal views from profiles. Different from previous deep

learning methods that mainly rely on intermediate features

for recognition, our method directly leverages the synthe-

sized identity preserving image for downstream tasks like

face recognition and attribution estimation. Experimental

results demonstrate that our method not only presents com-

pelling perceptual results but also outperforms state-of-the-

art results on large pose face recognition.

1. Introduction

Benefiting from the rapid development of deep learn-

ing methods and the easy access to a large amount of an-

notated face images, unconstrained face recognition tech-

niques [28, 29] have made significant advances in recent

years. Although surpassing human performance has been

∗These two authors contributed equally

Figure 1. Frontal view synthesis by TP-GAN. The upper half

shows the 90
◦ profile image (middle) and its corresponding syn-

thesized and ground truth frontal face. We invite the readers to

guess which side is our synthesis results (please refer to Sec. 1 for

the answer). The lower half shows the synthesized frontal view

faces from profiles of 90◦, 75◦ and 45
◦ respectively.

achieved on several benchmark datasets [25], pose varia-

tions are still the bottleneck for many real-world application

scenarios. Existing methods that address pose variations

can be divided into two categories. One category tries to

adopt hand-crafted or learned pose-invariant features [4,25],

while the other resorts to synthesis techniques to recover a

frontal view image from a large pose face image and then

use the recovered face images for face recognition [41, 42].

For the first category, traditional methods often make use

of robust local descriptors such as Gabor [5], Haar [32] and

LBP [2] to account for local distortions and then adopt met-

ric learning [4,33] techniques to achieve pose invariance. In

contrast, deep learning methods often handle position vari-

ances with pooling operation and employ triplet loss [25] or

2439



contrastive loss [28] to ensure invariance to very large intra-

class variations. However, due to the tradeoff between in-

variance and discriminability, these approaches cannot deal

with large pose cases effectively.

For the second category, earlier efforts on frontal view

synthesis usually utilize 3D geometrical transformations to

render a frontal view by first aligning the 2D image with ei-

ther a general [12] or an identity specific [29,40] 3D model.

These methods are good at normalizing small pose faces,

but their performance decreases under large face poses due

to severe texture loss. Recently, deep learning based meth-

ods are proposed to recover a frontal face in a data-driven

way. For instance, Zhu et al. [42] propose to disentangle

identity and pose representations while learning to estimate

a frontal view. Although their results are encouraging, the

synthesized image sometimes lacks fine details and tends to

be blurry under a large pose so that they only use the in-

termediate features for face recognition. The synthesized

image is still not good enough to perform other facial anal-

ysis tasks, such as forensics and attribute estimation.

Moreover, from an optimization point of view, recover-

ing the frontal view from incompletely observed profile is

an ill-posed or under-defined problem, and there exist mul-

tiple solutions to this problem if no prior knowledge or con-

straints are considered. Therefore, the quality of recovered

results heavily relies on the prior or the constraints exploited

in the training process. Previous work [15, 38, 41, 42] usu-

ally adopts pairwise supervision and seldom introduce con-

straints in the training process, so that they tend to produce

blurry results.

When human try to conduct a view synthesis process,

we firstly infer the global structure (or a sketch) of a frontal

face based on both our prior knowledge and the observed

profile. Then our attention moves to the local areas where

all facial details will be filled out. Inspired by this pro-

cess, we propose a deep architecture with two pathways

(TP-GAN) for frontal view synthesis. These two pathways

focus on the inference of global structure and the transfor-

mation of local texture respectively. Their corresponding

feature maps are then fused for further process for the gener-

ation of the final synthesis. We also make the recovery pro-

cess well constrained by incorporating prior knowledge of

the frontal faces’ distribution with a Generative Adversar-

ial Network (GAN) [9]. The outstanding capacity of GAN

in modeling 2D data distribution has significantly advanced

many ill-posed low level vision problems, such as super-

resolution [17] and inpainting [21]. Particularly, drawing

inspiration from the faces’ symmetric structure, a symme-

try loss is proposed to fill out occluded parts. Moreover, to

faithfully preserve the most prominent facial structure of an

individual, we adopt a perceptual loss [14] in the compact

feature space in addition to the pixel-wise L1 loss. Incor-

porating the identity preserving loss is critical for a faithful

synthesis and greatly improves its potential to be applied to

face analysis tasks. We show some samples generated by

TP-GAN in the upper half of Fig. 1 (the left side of each

tuple).

The main contributions of our work lie in three folds: 1)

We propose a human-like global and local aware GAN ar-

chitecture for frontal view synthesis from a single image,

which can synthesize photorealistic and identity preserving

frontal view images even under a very large pose. 2) We

combine prior knowledge from data distribution (adversar-

ial training) and domain knowledge of faces (symmetry and

identity preserving loss) to exactly recover the lost infor-

mation inherent in projecting a 3D object into a 2D image

space. 3) We demonstrate the possibility of a “recognition

via generation” framework and outperform state-of-the-art

recognition results under a large pose. Although some deep

learning methods have been proposed for face synthesis, our

method is the first attempt to be effective for the recognition

task with synthesized faces.

2. Related Work

2.1. Frontal View Synthesis

Frontal view synthesis, or termed as face normalization,

is a challenging task due to its ill-posed nature. Tradi-

tional methods address this problem either with 2D/3D lo-

cal texture warping [12, 40] or statistical modeling [24].

For instance, Hassner et al. [12] employ a mean 3D model

for face normalization. A joint frontal view synthesis and

landmark localization method is proposed in [24] with a

constrained low-rank minimization model. Recently, re-

searchers employ Convolutional Neural Networks (CNN)

for joint representation learning and view synthesis [15, 38,

41, 42]. Specifically, Yim et al. [38] propose a multi-task

CNN to predict identity preserving rotated images. Zhu

et al. [41, 42] develop novel architectures and learning ob-

jectives to disentangle the identity and pose representation

while estimating the frontal view. Reed et al. [22] propose

to use a Boltzmann machine to model factors of variation

and generate rotated images via pose manifold traversal.

Although it is much more convenient if the synthesized im-

age can be directly used for facial analysis tasks, most of

the previous methods mainly employ intermediate features

for face recognition because they cannot faithfully produce

an identity preserving synthesis.

2.2. Generative Adversarial Network (GAN)

As one of the most significant improvements on the re-

search of deep generative models [16, 23], GAN [9] has

drawn substantial attention from both the deep learning and

computer vision society. The min-max two-player game

provides a simple yet powerful way to estimate target dis-

tribution and generate novel image samples [6]. With its
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Figure 2. General framework of TP-GAN. The Generator contains two pathways with each processing global or local transformations. The

Discriminator distinguishes between synthesized frontal (SF) views and ground-truth (GT) frontal views. Detailed network architectures

can be found in the supplementary material.

power for distribution modeling, the GAN can encourage

the generated images to move towards the true image mani-

fold and thus generates photorealistic images with plausible

high frequency details. Recently, modified GAN architec-

tures, conditional GAN [19] in particular, have been suc-

cessfully applied to vision tasks like image inpainting [21],

super-resolution [17], style transfer [18], face attribute ma-

nipulation [26] and even data augmentation for boosting

classification models [27,39]. These successful applications

of GAN motivate us to develop frontal view synthesis meth-

ods based on GAN.

3. Approach

The aim of frontal view synthesis is to recover a photore-

alistic and identity preserving frontal view image IF from

a face image under a different pose, i.e. a profile image IP .

To train such a network, pairs of corresponding {IF , IP }
from multiple identities y are required during the training

phase. Both the input IP and output IF come from a pixel

space of size W ×H × C with C color channel.

It’s our goal to learn a synthesis function that can infer

the corresponding frontal view from any given profile im-

ages. Specifically, we model the synthesis function with a

two-pathway CNN GθG that is parametrized by θG. Each

pathway contains an Encoder and a Decoder, denoted as

{Gθg

E
, Gθg

D
} and {Gθl

E
, Gθl

D
}, where g and l stand for the

global structure pathway and the local texture pathway re-

spectively. In the global pathway, the bottleneck layer,

which is the output of Gθg

E
, is usually used for classifica-

tion task [37] with the cross-entropy loss Lcross entropy .

The network’s parameters GθG are optimized by mini-

mizing a specifically designed synthesis loss Lsyn and the

aforementioned Lcross entropy . For a training set with N
training pairs of {IFn , IPn }, the optimization problem can be

formulated as follows:

θ̂G =
1

N
argmin

θG

N∑

n=1

{Lsyn(GθG(I
P
n ), IFn )

+αLcross entropy(Gθg

E
(IPn ), yn)}

(1)

where α is a weighting parameter and Lsyn is defined as

a weighted sum of several losses that jointly constrain an

image to reside in the desired manifold. We will postpone

the detailed description of all the individual loss functions

to Sec. 3.2.

3.1. Network Architecture

3.1.1 Two Pathway Generator

The general architecture of TP-GAN is shown in Fig. 2.

Different from previous methods [15,38,41,42] that usually

model the synthesis function with one single network, our

proposed generator GθG has two pathways, with one global

network Gθg processing the global structure and four land-

mark located patch networks Gθl
i
, i ∈ {0, 1, 2, 3} attending

to local textures around four facial landmarks.

We are not the first to employ the two pathway modeling

strategy. Actually, this is a quite popular routine for 2D/3D

local texture warping [12, 40] methods. Similar to the hu-

man cognition process, they usually divide the normaliza-

tion of faces into two steps, with the first step to align the

face globally with a 2D or 3D model and the second step to
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warp or render local texture to the global structure. More-

over, Mohammed et al. [20] combines a global paramet-

ric model with a local non-parametric model for novel face

synthesis.

Synthesizing a frontal face IF from a profile image IP

is a highly non-linear transformation. Since the filters are

shared across all the spatial locations of the face image, we

argue that using merely a global network cannot learn fil-

ters that are suitable for both rotating a face and precisely

recovering local details. Therefore, we transfer the success

of the two pathway structure in traditional methods to a

deep learning based framework and introduce the human-

like two pathway generator for frontal view synthesis.

As shown in Fig. 2, Gθg is composed of a down-

sampling Encoder Gθg

E
and an up-sampling Decoder Gθg

D
,

extra skip layers are introduced for multi-scale feature fu-

sion. The bottleneck layer in the middle outputs a 256-

dimension feature vector vid, which is used for identity

classification to allow for identity-preserving synthesis. At

this bottleneck layer, as in [30], we concatenate a 100-dim

Gaussian random noise to vid to model variations other than

pose and identity.

3.1.2 Landmark Located Patch Network

The four input patches of the landmark located patch net-

work Gθl are center-cropped from four facial landmarks,

i.e. left eye center, right eye center, nose tip and mouth cen-

ter. Each Gθl
i
, i ∈ {0, 1, 2, 3} learns a separate set of filters

for rotating the center-cropped patch to its corresponding

frontal view (after rotation, the facial landmarks are still in

the center). The architecture of the landmark located patch

network is also based on an encoder-decoder structure, but

it has no fully connected bottleneck layer.

To effectively integrate the information from the global

and local pathways, we adopt an intuitive method for fea-

ture map fusion. As shown in Fig. 2, we firstly fuse the

output feature tensors (multiple feature maps) of four local

pathways to one single feature tensor that is of the same spa-

tial resolution as the global feature tensor. Specifically, we

put each feature tensor at a “template landmark location”,

and then a max-out fusing strategy is introduced to reduce

the stitching artifacts on the overlapping areas. Then, we

simply concatenate the feature tensor from each pathway to

produce a fused feature tensor and then feed it to successive

convolution layers to generate the final synthesis output.

3.1.3 Adversarial Networks

To incorporate prior knowledge of the frontal faces’ distri-

bution into the training process, we further introduce an dis-

criminator DθD to distinguish real frontal face images IF

from synthesized frontal face images GθG(I
P ), following

the work of Goodfellow et al. [9]. We train DθD and GθG

in an alternating way to optimize the following min-max

problem:

min
θG

max
θD

EIF∼P (IF ) logDθD (I
F )+

EIP∼P (IP ) log(1−DθD (GθG(I
P )))

(2)

Solving this min-max problem will continually push the

output of the generator to match the target distribution of

the training frontal faces, thus it encourages the synthesized

image to reside in the manifold of frontal faces, leading to

photorealistic synthesis with appealing high frequency de-

tails. As in [27], our DθD outputs a 2 × 2 probability map

instead of one scalar value. Each probability value now cor-

responds to a certain region instead of the whole face, and

DθD can specifically focus on each semantic region.

3.2. Synthesis Loss Function

The synthesis loss function used in our work is a

weighted sum of four individual loss functions, we will give

a detailed description in the following sections.

3.2.1 Pixel-wise Loss

We adopt pixel-wise L1 loss at multiple locations to facili-

tate multi-scale image content consistency:

Lpixel =
1

W ×H

W∑

x=1

H∑

y=1

|Ipredx,y − Igtx,y| (3)

Specifically, the pixel wise loss is measured at the output

of the global, the landmark located patch network and their

final fused output. To facilitate a deep supervision, we also

add the constraint on multi-scale outputs of the Gθg

D
. Al-

though this loss will lead to overly smooth synthesis results,

it is still an essential part for both accelerated optimization

and superior performance.

3.2.2 Symmetry Loss

Symmetry is an inherent feature of human faces. Exploiting

this domain knowledge as a prior and imposing a symmet-

ric constraint on the synthesized images may effectively al-

leviate the self-occlusion problem and thus greatly improve

performance for large pose cases. Specifically, we define

a symmetry loss in two spaces, i.e. the original pixel space

and the Laplacian image space, which is robust to illumina-

tion changes. The symmetry loss of a face image takes the

form:

Lsym =
1

W/2×H

W/2∑

x=1

H∑

y=1

|Ipredx,y − IpredW−(x−1),y| (4)

For simplicity, we selectively flip the input so that the

occluded part are all on the right side. Besides, only the

occluded part (right side) of Ipred receives the symmetry

2442



(a) Profile (b) Ours (c) [30] (d) [38] (e) [8] (f) [40] (g) [12] (h) Frontal

Figure 3. Comparison with state-of-the-art synthesis methods under the pose of 45◦ (first two rows) and 30
◦ (last row).

loss, i.e. we explicitly pull the right side to be closer to

the left. Lsym’s contribution is twofold, generating realistic

images by encouraging a symmetrical structure and acceler-

ating the convergence of TP-GAN by providing additional

back-propagation gradient to relieve self-occlusion for ex-

treme poses. However, due to illumination changes or in-

trinsic texture difference, pixel values are not strictly sym-

metric most of the time. Fortunately, the pixel difference

inside a local area is consistent, and the gradients of a point

along all directions are largely reserved under different illu-

minations. Therefore, the Laplacian space is more robust to

illumination changes and more indicative for face structure.

3.2.3 Adversarial Loss

The loss for distinguishing real frontal face images IF from

synthesized frontal face images GθG(I
P ) is calculated as

follows:

Ladv =
1

N

N∑

n=1

− logDθD (GθG(I
P
n )) (5)

Ladv serves as a supervision to push the synthesized im-

age to reside in the manifold of frontal view images. It can

prevent blur effect and produce visually pleasing results.

3.2.4 Identity Preserving Loss

Preserving the identity while synthesizing the frontal view

image is the most critical part in developing the “recogni-

tion via generation” framework. In this work, we exploit the

perceptual loss [14] that is originally proposed for maintain-

ing perceptual similarity to help our model gain the identity

preserving ability. Specifically, we define the identity pre-

serving loss based on the activations of the last two layers

of the Light CNN [35]:

Lip =

2∑

i=1

1

Wi ×Hi

Wi∑

x=1

Hi∑

y=1

|F (IP )ix,y − F (G(Ipred))ix,y|

(6)

where Wi, Hi denotes the spatial dimension of the last ith
layer. The identity preserving loss enforces the prediction

to have a small distance with the ground-truth in the com-

pact deep feature space. Since the Light CNN is pre-trained

to classify tens of thousands of identities, it can capture the

most prominent feature or face structure for identity dis-

crimination. Therefore, it is totally viable to leverage this

loss to enforce an identity preserving frontal view synthe-

sis.

Lip has better performance when used with Ladv . Us-

ing Lip alone makes the results prone to annoying artifacts,

because the search for a local minimum of Lip may go

through a path that resides outside the manifold of natural

face images. Using Ladv and Lip together can ensure that

the search resides in that manifold and produces photoreal-

istic image.

3.2.5 Overall Objective Function

The final synthesis loss function is a weighted sum of all the

losses defined above:
Lsyn = Lpixel + λ1Lsym + λ2Ladv + λ3Lip + λ4Ltv

(7)

We also impose a total variation regularization Ltv [14] on

the synthesized result to reduce spike artifacts.

4. Experiments

Except for synthesizing natural looking frontal view im-

ages, the proposed TP-GAN also aims to generate identity

preserving image for accurate face analysis with off-the-

shelf deep features. Therefore, in this section, we demon-

strate the merits of our model on qualitative synthesis re-

sults and quantitive recognition results in Sec. 4.1 and 4.2.

Sec. 4.3 presents visualization of the final deep feature rep-

resentations to illustrate the effectiveness of TP-GAN. Fi-

nally, in Sec. 4.4, we conduct detailed algorithmic evalu-

ation to demonstrate the advantages of the proposed two-

pathway architecture and synthesis loss function.

Implementation details We use colorful images of size

128 × 128 × 3 in all our experiments for both the input
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Figure 4. Synthesis results by TP-GAN under different poses. From left to right, the poses are 90
◦, 75◦, 60◦, 45◦, 30◦ and 15

◦. The

ground truth frontal images are provided at the last column.

Figure 5. Challenging situations. The facial attributes, e.g. beard,

eyeglasses are preserved by TP-GAN. The occluded forehead and

cheek are recovered.

Table 1. Rank-1 recognition rates (%) across views and illumina-

tions under Setting 1. For all the remaining tables, only methods

marked with * follow the “recognition via generation” procedure

while others leverage intermediate features for face recognition.
Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

CPF [38] - - - 71.65 81.05 89.45

Hassner et al. * [12] - - 44.81 74.68 89.59 96.78

HPN [7] 29.82 47.57 61.24 72.77 78.26 84.23

FIP 40 [41] 31.37 49.10 69.75 85.54 92.98 96.30

c-CNN Forest [36] 47.26 60.66 74.38 89.02 94.05 96.97

Light CNN [35] 9.00 32.35 73.30 97.45 99.80 99.78

TP-GAN* 64.03 84.10 92.93 98.58 99.85 99.78

IP and the prediction Ipred = GθG(I
P ). Our method is

evaluated on MultiPIE [10], a large dataset with 750, 000+
images for face recognition under pose, illumination and

expression changes. The feature extraction network, Light

CNN, is trained on MS-Celeb-1M [11] and fine-tuned on

the original images of MultiPIE. Our network is imple-

mented with Tensorflow [1]. The training of TP-GAN

lasts for one day with a batch size of 10 and a learning

rate of 10−4. In all our experiments, we empirically set

α = 10−3, λ1 = 0.3, λ2 = 10−3, λ3 = 3 × 10−3 and

λ4 = 10−4.

4.1. Face Synthesis

Most of the previous work on frontal view synthesis are

dedicated to address that problem within a pose range of

±60◦. Because it is commonly believed that with a pose

larger than 60◦, it is difficult to faithfully recover a frontal

view image. However, we will show that given enough

training data and a proper architecture and loss design, it is

in fact feasible to recover photorealistic frontal views from

very large poses. Fig. 4 shows TP-GAN’s ability to recover

compelling identity-preserving frontal faces from any pose

(a) Ours (b) [38] (c) [8] (d) [40] (e) [12]

Figure 6. Mean faces from six images (within ±45
◦) per identity.

and Fig. 3 illustrates a comparison with state-of-the-art face

frontalization methods. Note that most of TP-GAN’s com-

petitors cannot deal with poses larger than 45◦, therefore,

we only report their results under 30◦ and 45◦.

Compared to competing methods, TP-GAN presents a

good identity preserving quality while producing photo-

realistic synthesis. Thanks to the data-driven modeling

with prior knowledge from Ladv and Lip, not only the

overall face structure but also the occluded ears, cheeks

and forehead can be hallucinated in an identity consistent

way. Moreover, it also perfectly preserves observed face

attributes in the original profile image, e.g. eyeglasses and

hair style, as shown in Fig. 5.

To further demonstrate the stable geometry shape of the

syntheses across multiple poses, we show the mean image

of synthesized faces from different poses in Fig. 6. The

mean faces from TP-GAN preserve more texture detail and

contain less blur effect, showing a stable geometry shape

across multiple syntheses. Note that our method does not

rely on any 3D knowledge for geometry shape estimation,

the inference is made through sheer data-driven learning.

As a demonstration of our model’s superior general-

ization ability to in the wild faces, we use images from

LFW [13] dataset to test a TP-GAN model trained solely

on Multi-PIE. As shown in Fig. 7, although the resultant

color tone is similar to images from Multi-PIE, TP-GAN

can faithfully synthesize frontal view images with both finer

details and better global shapes for faces in LFW dataset

compared to state-of-the-art methods like [12, 40].
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(a) LFW (b) Ours (c) [40] (d) [12]

Figure 7. Synthesis results on the LFW dataset. Note that TP-GAN

is trained on Mulit-PIE.

4.2. Identity Preserving Property

Face Recognition To quantitatively demonstrate our

method’s identity preserving ability, we conduct face recog-

nition on MultiPIE with two different settings. The experi-

ments are conducted by firstly extracting deep features with

Light-CNN [35] and then compare Rank-1 recognition ac-

curacy with a cosine-distance metric. The results on the

profile images IP serve as our baseline and are marked by

the notation Light-CNN in all tables. It should be noted

that although many deep learning methods have been pro-

posed for frontal view synthesis, none of their synthesized

images proved to be effective for recognition tasks. In a

recent study on face hallucination [34], the authors show

that directly using a CNN synthesized high resolution face

image for recognition will certainly degenerate the perfor-

mance instead of improving it. Therefore, it is of great sig-

nificance to validate whether our synthesis results can boost

the recognition performance (whether the “recognition via

generation” procedure works).

In Setting 1, we follow the protocol from [36], and only

images from session one are used. We include images

with neutral expression under 20 illuminations and 11 poses

within ±90◦. One gallery image with frontal view and illu-

mination is used for each testing subject. There is no over-

lap between training and testing sets. Table 1 shows our

recognition performance and the comparison with the state-

of-the-art. TP-GAN consistently achieves the best perfor-

mance across all angles, and the larger the angle, the greater

the improvement. When compared with c-CNN Forest [36],

which is an ensemble of three models, we achieve a perfor-

mance boost of about 20% on large pose cases.

In Setting 2, we follow the protocol from [38], where

neural expression images from all four sessions are used.

One gallery image is selected for each testing identity from

their first appearance. All synthesized images of MultiPIE

Table 2. Rank-1 recognition rates (%) across views, illuminations

and sessions under Setting 2.
Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

FIP+LDA [41] - - 45.9 64.1 80.7 90.7

MVP+LDA [42] - - 60.1 72.9 83.7 92.8

CPF [38] - - 61.9 79.9 88.5 95.0

DR-GAN [30] - - 83.2 86.2 90.1 94.0

Light CNN [35] 5.51 24.18 62.09 92.13 97.38 98.59

TP-GAN* 64.64 77.43 87.72 95.38 98.06 98.68

Table 3. Gender classification accuracy (%) across views and illu-

minations.
Method ±45◦ ±30◦ ±15◦

IP
60

85.46 87.14 90.05

CPI* [38] 76.80 78.75 81.55

Amir et al. * [8] 77.65 79.70 82.05

IP
128

86.22 87.70 90.46

Hassner et al. * [12] 83.83 84.74 87.15

TP-GAN* 90.71 89.90 91.22

in this paper are from the testing identities under Setting

2. The result is shown in Table 2. Note that all the com-

pared CNN based methods achieve their best performances

with learned intermediate features, whereas we directly use

the synthesized images following a “recognition via gener-

ation” procedure.

Gender Classification To further demonstrate the poten-

tial of our synthesized images on other facial analysis tasks,

we conduct an experiment on gender classification. All the

compared methods in this part also follow the “recognition

via generation” procedure, where we directly use their syn-

thesis results for gender classification. The CNN for gender

classification is of the same structure as the encoder Gθg

E

and is trained on batch1 of the UMD [3] dataset.

We report the testing performance on Multi-PIE

(Setting-1) in Table 3. For fair comparison, we present

the results on the unrotated original images in two resolu-

tions, 128× 128 (IP128) and 60× 60 (IP60) respectively. TP-

GAN’s synthesis achieves a better classification accuracy

than the original profile images due to normalized views.

It’s not surprising to see that all other compared models

perform worse than the baseline, as their architectures are

not designed for the gender classification task. Similar phe-

nomenon is observed in [34] where synthesized high reso-

lution face images severely degenerate the recognition per-

formance instead of improving it. That indicates the high

risk of losing prominent facial features of IP when manip-

ulating images in the pixel space.

4.3. Feature Visualization

We use t-SNE [31] to visualize the 256-dim deep fea-

ture on a two dimensional space. The left side of Fig. 8

illustrates the deep feature space of the original profile im-

ages. It’s clear that images with a large pose (90◦ in par-

ticular) are not separable in the deep feature space spanned

by the Light-CNN. It reveals that even though the Light-

CNN is trained with millions of images, it still cannot prop-
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Figure 8. Feature space of the profile faces (left) and fontal view

synthesized images (right). Each color represents a different iden-

tity. Each shape represent a view. The images for one identity are

labeled.

Table 4. Model comparison: Rank-1 recognition rates (%) under

Setting 2.
Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

w/o P 44.13 66.10 80.64 92.07 96.59 98.35

w/o Lip 43.23 56.55 70.99 85.87 93.43 97.06

w/o Ladv 62.83 76.10 85.04 92.45 96.34 98.09

w/o Lsym 62.47 75.71 85.23 93.13 96.50 98.47

TP-GAN 64.64 77.43 87.72 95.38 98.06 98.68

erly deal with large pose face recognition problems. On the

right side, after frontal view synthesis with our TP-GAN,

the generated frontal view images can be easily classified

into different groups according to their identities.

4.4. Algorithmic analysis

In this section, we go over different architectures and

loss function combinations to gain insight into their respec-

tive roles in frontal view synthesis. Both qualitative visu-

alization results and quantitive recognition results are re-

ported for a comprehensive comparison.

We compare four variations of TP-GAN in this section,

one for comparing the architectures and the other three for

comparing the objective functions. Specifically, we train

a network without the local pathway (denoted as P) as the

first variant. With regards to the loss function, we keep the

two-pathway architecture intact and remove one of the three

losses, i.e. Lip, Ladv and Lsym, in each case.

Detailed recognition performance is reported in Table 4.

The two-pathway architecture and the identity preserving

loss contribute the most for improving the recognition per-

formance, especially on large pose cases. Although not as

much apparent, both the symmetry loss and the adversarial

loss help to improve the recognition performance. Fig. 9

illustrates the perceptual performance of these variants. As

expected, inference results without the identity preserving

loss or the local pathway deviate from the true appearance

seriously. And the synthesis without adversarial loss tends

to be very blurry, while the result without the symmetry loss

sometimes shows unnatural asymmetry effect.

(a) methods (b) 90
◦ (c) 75

◦ (d) 60
◦ (e) 30

◦

Figure 9. Model comparison: synthesis results of TP-GAN and its

variants.

5. Conclusion

In this paper, we have presented a global and local per-

ception GAN framework for frontal view synthesis from a

single image. The framework contains two separate path-

ways, modeling the out-of-plane rotation of the global struc-

ture and the non-linear transformation of the local texture

respectively. To make the ill-posed synthesis problem well

constrained, we further introduce adversarial loss, symme-

try loss and identity preserving loss in the training process.

Adversarial loss can faithfully discover and guide the syn-

thesis to reside in the data distribution of frontal faces. Sym-

metry loss can explicitly exploit the symmetry prior to ease

the effect of self-occlusion in large pose cases. Moreover,

identity preserving loss is incorporated into our framework,

so that the synthesis results are not only visually appeal-

ing but also readily applicable to accurate face recognition.

Experimental results demonstrate that our method not only

presents compelling perceptual results but also outperforms

state-of-the-art results on large pose face recognition.
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