
AutoGAN: Neural Architecture Search for Generative Adversarial Networks

Xinyu Gong1 Shiyu Chang2 Yifan Jiang1 Zhangyang Wang1

1Department of Computer Science & Engineering, Texas A&M University
2MIT-IBM Watson AI Lab

{xy gong, yifanjiang97, atlaswang}@tamu.edu shiyu.chang@ibm.com

Abstract

Neural architecture search (NAS) has witnessed prevail-
ing success in image classification and (very recently) seg-
mentation tasks. In this paper, we present the first prelimi-
nary study on introducing the NAS algorithm to generative
adversarial networks (GANs), dubbed AutoGAN. The mar-
riage of NAS and GANs faces its unique challenges. We
define the search space for the generator architectural vari-
ations and use an RNN controller to guide the search, with
parameter sharing and dynamic-resetting to accelerate the
process. Inception score is adopted as the reward, and a
multi-level search strategy is introduced to perform NAS
in a progressive way. Experiments validate the effective-
ness of AutoGAN on the task of unconditional image gen-
eration. Specifically, our discovered architectures achieve
highly competitive performance compared to current state-
of-the-art hand-crafted GANs, e.g., setting new state-of-the-
art FID scores of 12.42 on CIFAR-10, and 31.01 on STL-10,
respectively. We also conclude with a discussion of the cur-
rent limitations and future potential of AutoGAN. The code
is avaliable at https://github.com/TAMU-VITA/
AutoGAN .

1. Introduction
Generative adversarial networks (GANs) have been pre-

vailing since its origin [11]. One of their most notable suc-
cesses lies in generating realistic natural images with vari-
ous convolutional architectures [47, 5, 61, 26, 13, 67]. In
order to improve the quality of generated images, many
efforts have been proposed, including modifying discrim-
inator loss functions [3, 68], enforcing regularization terms
[6, 13, 42, 5], introducing attention mechanism [61, 64], and
adopting progressive training [26].

However, the backbone architecture design of GANs
has received relatively less attention, and was often con-
sidered a less significant factor accounting for GAN per-
formance [39, 32]. Most earlier GANs stick to relatively
shallow generator and discriminator architectures, mostly

owing to the notorious instability in GAN training. Lately,
several state-of-the-art GANs [13, 42, 64, 5] adopted deep
residual network generator backbones for better generat-
ing high-resolution images. In most other computer vision
tasks, a lot of the progress arises from the improved de-
sign of network architectures, such as image classification
[15, 16, 52, 51, 35], segmentation [8, 9, 49], and pose esti-
mation [43]. Hereby, we advocate that enhanced backbone
designs are also important for improving GANs further.

In recent years, there are surging interests in designing
sophisticated neural network architectures automatically.
Neural architecture search (NAS) has been successfully de-
veloped and evaluated on the task of image classification
[71, 46], and lately on image segmentation as well [7, 36].
The discovered architectures outperform human-designed
models. However, naively porting existing NAS ideas from
image classification/segmentation to GAN would not suf-
fice. First and foremost, even given hand-designed archi-
tectures, the training of GANs is notoriously unstable and
prone to collapse [50]. Mingling NAS into the training pro-
cess will undoubtedly amplify the difficulty. As another
important challenge, while the validation accuracy makes a
natural reward option for NAS in image classification, it is
less straightforward to choose a good metric for evaluating
and guiding the GAN search process.

This paper presents an architecture search scheme
specifically tailored for GANs, dubbed AutoGAN. Up to
our best knowledge, AutoGAN describes the first attempt
to incorporate NAS with GANs, and belongs to one of the
first attempts to extend NAS beyond image classification
too. Our technical innovations are summarized as follows:
• We define the search space to capture the GAN archi-

tectural variations. On top of that, we use an RNN con-
troller [71] to guide the architecture search. Based on
the parameter sharing strategy in [46], we further in-
troduce a parameter dynamic-resetting strategy in our
search progress, to boost the training speed.

• We use Inception score (IS) [50] as the reward, in
the reinforcement-learning-based optimization of Au-
toGAN. The discovered models are found also to show

ar
X

iv
:1

90
8.

03
83

5v
1 

 [
cs

.C
V

] 
 1

1 
A

ug
 2

01
9

https://github.com/TAMU-VITA/AutoGAN
https://github.com/TAMU-VITA/AutoGAN


favorable performance under other GAN metrics, e.g.,
the Frchet Inception Distance (FID) [50].

• We further introduce multi-level architecture search
(MLAS) to AutoGAN, as motivated by the progres-
sive GAN training [26]. MLAS performs the search
in multiple stages, in a bottom-up sequential fashion,
with beam search [37].

We conduct a variety of experiments to validate the effec-
tiveness of AutoGAN. Our discovered architectures yield
highly promising results that are better than or compara-
ble with current hand-designed GANs. On the CIFAR-10
dataset, AutoGAN obtains an Inception score of 8.55, and
a FID score of 12.42. In addition, we show that the discov-
ered architecture on CIFAR-10 even performs competitively
on the STL-10 image generation task, with a 9.16 Inception
score and a 31.01 FID score, demonstrating a strong trans-
ferability. On both datasets, AutoGAN establishes the new
state-of-the-art FID scores. Many of our experimental find-
ings concur with previous GAN crafting experiences, and
shed light on new insights into GAN generator design.

2. Related Work
2.1. Neural Architecture Search

Neural architecture search (NAS) algorithms aim to find
an optimal neural network architecture instead of using a
hand-crafted one for a specific task. Previous works on NAS
have achieved great success on the task of image classifica-
tion [30]. Recent works further extended the NAS algo-
rithms to dense and structured prediction [7, 36]. It is also
worth mentioning that NAS is also applied to CNN com-
pression and acceleration [17]. However, there is not any
NAS algorithm developed for generative models.

A NAS algorithm consists of three key components: the
search space, the optimization algorithm, and the proxy
task. For search space, there are generally two cate-
gories: searching for the whole architecture directly (macro
search), or searching for cells and stacking them in a
pre-defined way (micro search). For the optimization al-
gorithm, popular options include reinforcement learning
[4, 71, 69, 72], evolutionary algorithm [60], Bayesian op-
timization [24], random search [7], and gradient-based op-
timization methods [38, 1]. For the proxy task, it is de-
signed to evaluate the performance of discovered architec-
ture efficiently during training. Examples include early stop
[7, 72], using low-resolution images [57, 10, 29], perfor-
mance prediction with a surrogate model [37], employing a
small backbone [7] or leveraging shared parameters [46].

Most NAS algorithms [71, 46] generate the network ar-
chitecture (macro search) or the cell (micro search) by one
pass of the controller. A recent work [37] introduced multi-
level search to NAS in the image classification task, using
beam search. Architecture search will begin on a smaller

cell, and top-performance candidates are preserved. The
next round of search will be continued based on them for
the bigger cell.

2.2. Generative Adversarial Network

A GAN has a generator network and a discrimina-
tor network playing a min-max two-player game against
each other. It has achieved great success in many genera-
tion and synthesis tasks, such as text-to-image translation
[66, 65, 61, 48], image-to-image translation [22, 70, 63],
and image enhancement [33, 31, 23]. However, the train-
ing of GAN is often found to be highly unstable [50], and
commonly suffers from non-convergence, mode collapse,
and sensitivity to hyperparameters. Many efforts have been
devoted to alleviating those problems, such as the Wasser-
stein loss [3], spectral normalization [42], progressive train-
ing [26], and the self-attention block [64], to name just a
few.

3. Technical Approach
A GAN consists of two competing networks: a generator

and a discriminator. It is also known that the two architec-
tures have to be delicately balanced in their learning capac-
ities. Hence to build AutoGAN, the first question is: how
to build the two networks in a GAN (generator and discrim-
inator, denoted as G and D hereinafter) together? On one
hand, if we use a pre-fixed D (or G) and search only for G
(or D), it will easily incur imbalance between the powers
of D or G [18, 2] (especially, at the early stage of NAS),
resulting in slow updates or trivial learning. On the other
hand, while it might be possible jointly search for G and
D, empirical experiments observe that such two-way NAS
will further deteriorate the original unstable GAN training,
leading to highly oscillating training curves and often fail-
ure of convergence. As a trade-off, we propose to use NAS
to only search for the architecture of G, while growing
D as G becomes deeper, by following a given routine to
stack pre-defined blocks. The details of growing D will be
explained more in the supplementary.

Based on that, AutoGAN follows the basic idea of [71] to
use a recurrent neural network (RNN) controller to choose
blocks from its search space, to build the G network. The
basic scheme is illustrated in Figure 1. We make multi-fold
innovations to address the unique challenges arising from
the specific task of training GANs. We next introduce Au-
toGAN from the three key aspects: the search space, the
proxy task and the optimization algorithm.

3.1. Search Space

AutoGAN is based on a multi-level architecture
search strategy, where the generator is composed of
several cells. Here we use a (s+5) element tuple
(skip1, ..., skips, C,N,U, SC) to categorize the s-th cell,



…

ConvBlock norm upsample Shortcut
connection

Cell 0

ConvBlock norm upsample

Controller 
0

Controller 
0

Controller 
0

Controller 
0

Top 
K

ConvBlock norm upsample Shortcut
connection

Cell 1

ConvBlock norm upsample

Controller 
1

Controller 
1

Controller 
1

Controller 
1

Top 
K

Controller 
1

Shortcut
connection

Skip
connection

Skip
connection

Figure 1: The running scheme of the RNN controller. At each time step, the controller outputs a hidden vector to be decoded
into an operation, with its corresponding softmax classifier. Note that, using MLAS, we use a different controller for the
search of each cell. Once the search process for one cell is done, the controller samples M candidate architectures and then
picks the top K from them. The top K architectures’ controller outputs will fed as the input of the next cell’s controller.

where s is the cell index starting at 0 (0-th cell doesn’t have
skip0 connection):

• skipi is a binary value indicating whether the current
s-th cell takes a skip connection from the (i−1)-th cell
as its input, i = 1, ..., s. Note that each cell could take
multiple skip connections from other preceding cells.

• C is the basic convolution block type, including pre-
activation [16] and post-activation convolution block.

• N stands for the normalization type of this block, in-
cluding three options: batch normalization[21], in-
stance normalization[55], and no normalization.

• U stands for the upsampling operation which was stan-
dard in current image generation GANs, including bi-
linear upsampling, nearest neighbour upsampling, and
stride 2 deconvolution.

• SC is a binary value indicating the in-cell shortcut.

Fig. 2 illustrates the AutoGAN generator search space. The
upsampling operation U will also determine the upsample
method of the skip-in feature map.

P
re

-a
ct

iv
at

io
n

C
on

vB
lo

ck
 

w
ith

 n
o 

no
rm

al
iz

at
io

n

N
ea

re
st

 U
ps

am
pl

e

P
re

-a
ct

iv
at

io
n

C
on

vB
lo

ck
 

w
ith

 n
o 

no
rm

al
iz

at
io

n

P
re

-a
ct

iv
at

io
n

C
on

vB
lo

ck
 

w
ith

 n
o 

no
rm

al
iz

at
io

n

B
ili

ne
ar

 U
ps

am
pl

e

P
re

-a
ct

iv
at

io
n

C
on

vB
lo

ck
 

w
ith

 n
o 

no
rm

al
iz

at
io

n

P
re

-a
ct

iv
at

io
n

C
on

vB
lo

ck
 

w
ith

 n
o 

no
rm

al
iz

at
io

n

N
ea

re
st

 U
ps

am
pl

e

P
re

-a
ct

iv
at

io
n

C
on

vB
lo

ck
 

w
ith

 n
o 

no
rm

al
iz

at
io

n

Li
ne

ar

to
R
G

B

z

C
on

vB
lo

ck
 

w
/o

 n
or

m
al

iz
at

io
n

U
ps

am
pl

e

C
on

vB
lo

ck
 

w
/o

 n
or

m
al

iz
at

io
n

Last 
cell’s 

output

Previous 
cells’ 

skip outs

U C

SCN

skip

Pre-activation
ConvBlock 

with no normalization

Nearest Upsample

Pre-activation
ConvBlock 

with no normalization

Pre-activation
ConvBlock 

with no normalization

Bilinear Upsample

Pre-activation
ConvBlock 

with no normalization

Pre-activation
ConvBlock 

with no normalization

Nearest Upsample

Pre-activation
ConvBlock 

with no normalization

Linear

toRGB

z

Figure 2: The search space of a generator cell in AutoGAN.

3.2. Proxy Task

Inception score (IS) [50] and FID score [18] are two
main evaluation metrics for GANs. Since FID score is much
more time-consuming to calculate, we choose the IS of each
derived child model, as the reward to update controller via
reinforcement learning.

Parameter sharing [40, 73] shows to effectively boost the
efficiency of NAS [46]. Based on the parameter-sharing
in [46], we further bring in a parameter dynamic-resetting
strategy to AutoGAN. It has been observed that the training
of GANs becomes unstable and undergoes mode collapse
after long time training [5]. It could be a waste of time to
continue training the shared collapsed model. Empirically,
we observe the variance of the training loss (hinge loss) usu-
ally becomes very small when mode collapse happens.

Based on this observation, we set a moving window to
store the most recent training loss values, for both genera-
tor and discriminator. Once the standard deviation of those
stored training losses is smaller than a pre-defined thresh-
old, the training of the shared GAN of current iteration will
be terminated. The parameters of the shared-GAN model
will be re-initialized after updating the controller at the cur-
rent iteration. Notice that we do NOT re-initialize the pa-
rameters of the RNN controller, thus it could continue to
guide the architecture search with inheriting the historic
knowledge. With dynamic-resetting, the searching process
becomes much more efficient.

3.3. Optimization Method

There are two sets of parameters in the AutoGAN: the
RNN controller’s parameters (denoted as θ); and the shared
GAN parameters in the searched generator and the corre-
sponding discriminator (denoted as ω). The training pro-
cess is briefly outlined in Algo. 1, as an alternating process
between two phases.

The first phase will train ω of the shared GAN for sev-
eral epochs, with θ fixed. For each training iteration of



the shared GAN training process, a candidate architecture
will be sampled by the RNN controller. Once the stan-
dard deviation of the recorded training loss drop below the
threshold, the dynamic resetting FLAG FDR will be set to
True and the training process of shared GAN will be ter-
minated immediately. Note that the shared GAN will not
be re-initialized until the training of controller at the current
epoch completes. The second phase trains θ with ω fixed:
the controller will first sampleK child models of the shared
generator. Their ISs will be calculated as rewards. The
RNN controller will be updated via reinforcement learning
with a moving average baseline. After training ustage iter-
ations, the top K architectures will be picked from the de-
rived architectures. Meanwhile, a new controller will be ini-
tialized to proceed the architecture searching of next stage.

Algorithm 1: Pseudo codes for AutoGAN searching.

iters = 0 ;
stage = 0 ;
FDR = False ;
while iters < 90 do

train (generator, discriminator, FDR);
train (controller);
if iters % ustage == 0 then

save the top K architectures;
generator = grow (generator) ;
discriminator = grow (discriminator) ;
controller = new (controller);
stage+ = 1;

end
if FDR == True then

// dynamic reset
initialize (generator);
initialize (discriminator);
FDR = False;

end
iters+ = 1;

end

3.3.1 Training Shared GAN

During this phase, we fix the RNN controller’s policy
π(a, θ) and update the shared parameters ω through stan-
dard GAN training. Specifically, we train with an alternat-
ing fashion using the hinge adversarial loss [42, 5, 53, 64]:

LD =Ex∼qdata
[min(0,−1 +D(x)]+

Ez∼p(z)[min(0,−1−D(G(z))],
(1)

LG = Ez∼p(z)[min(0, D(G(z))], (2)

We further introduce multi-level architecture search
(MLAS) to AutoGAN, where the generator (and cor-
respondingly the discriminator) will grow progressively.

MLAS performs the search in a bottom-up cell-wise fash-
ion, using beam search [37]. When searching for the next
cell, we will use a different controller, selects the top K
beams from current candidate cells and start the next round
of search based on them.

3.3.2 Training the Controller

In this phase we fix ω and update the policy parameters θ
of the controller. We define the rewardR(a, ω) as the IS of
the sampled child model a. The RNN controller is updated
using the Adam optimizer [28] via REINFORCE [59], with
a moving average baseline. Besides, we also add a entropy
term to encourage the exploration.

We use a LSTM [20] controller. For each time step, the
LSTM will output a hidden vector, which will be decoded
and classified by its corresponding softmax classifier. The
LSTM controller works in an autogressive way, where the
output of the last step will be fed into the next step. The
operations of GAN’s each cell will be sampled from each
time step’s output. Specifically, a new controller will be
initialized when a new cell is added to the existing model
to increase the output image resolution. The previous top
K models’ architectures and corresponding hidden vectors
will be saved. Their hidden vectors will be fed into the new
controller as input to search for next cell’s operations.

3.3.3 Architecture Derivation

We will first sample several generator architectures from
the learned policy π(a, θ). Then, the reward R (Inception
score) will be calculated for each model. We will then pick
top K models in terms of highest rewards, and train them
from scratch. After that, we evaluate their Inception scores
again, and the model with the highest Inception score be-
comes our final derived generator architecture.

4. Experiments
Datasets In this paper, we adopt CIFAR-10 [29] as the
main testbed for AutoGAN. It consists of 50,000 training
image and 10,000 test images, where each image is of 32×
32 resolution. We use the training set to train AutoGAN,
without any data augmentation.

We also adopt the STL-10 dataset to show the transfer-
ablity of AutoGAN discovered architectures. When using
STL-10 for training, we adopt both the 5,000 image train-
ing set and 100,000 image unlabeled set. All images are
resized to 48× 48, without any other data augmentation.

Training details We follow the training setting of spectral
normalization GAN [42] when training the shared GAN.
The learning rate of both generator and discriminator are
set to 2e−4, using the hinge loss, an Adam optimizer [28], a



batch size of 64 for discriminator and a batch size of 128 for
generator. The spectral normalization is only enforced on
the discriminator. We train our controller using Adam [28],
with learning rate of 3.5e−4. We also add the entropy of
the controller’s output probability to the reward, weighted
by 1e−4, in order to encourage the exploration.

AutoGAN is searched for 90 iterations. For each itera-
tion, the shared GAN will be trained for 15 epochs, and the
controller will be trained for 30 steps. We set the dynamic-
resetting variance threshold at 1e−3. We train the discov-
ered architectures, using the same training setting as the
shared GAN, for 50,000 generator iterations.

4.1. Results on CIFAR 10

P
re

-a
ct

iv
a
ti
o
n

C
o
n
v
B
lo

ck
 

w
it
h
 n

o
 n

o
rm

a
li
z
a
ti
o
n

N
e
a
re

st
 U

p
sa

m
p
le

P
re

-a
ct

iv
a
ti
o
n

C
o
n
v
B
lo

ck
 

w
it
h
 n

o
 n

o
rm

a
li
z
a
ti
o
n

P
re

-a
ct

iv
a
ti
o
n

C
o
n
v
B
lo

ck
 

w
it
h
 n

o
 n

o
rm

a
li
z
a
ti
o
n

B
il
in

e
a
r 

U
p
sa

m
p
le

P
re

-a
ct

iv
a
ti
o
n

C
o
n
v
B
lo

ck
 

w
it
h
 n

o
 n

o
rm

a
li
z
a
ti
o
n

P
re

-a
ct

iv
a
ti
o
n

C
o
n
v
B
lo

ck
 

w
it
h
 n

o
 n

o
rm

a
li
z
a
ti
o
n

N
e
a
re

st
 U

p
sa

m
p
le

P
re

-a
ct

iv
a
ti
o
n

C
o
n
v
B
lo

ck
 

w
it
h
 n

o
 n

o
rm

a
li
z
a
ti
o
n

L
in

e
a
r

to
R
G

B

z

C
o
n
v
B
lo

ck
 

w
/o

 n
o
rm

a
li
z
a
ti
o
n

U
p
sa

m
p
le

C
o
n
v
B
lo

ck
 

w
/o

 n
o
rm

a
li
z
a
ti
o
n

Last 
cell’s 

output

Previous 
cells’ 

skip outs

U C

SCN

skip

Pre-activation

ConvBlock 

with no normalization

Nearest Upsample

Pre-activation

ConvBlock 

with no normalization

Pre-activation

ConvBlock 

with no normalization

Bilinear Upsample

Pre-activation

ConvBlock 

with no normalization

Pre-activation

ConvBlock 

with no normalization

Nearest Upsample

Pre-activation

ConvBlock 

with no normalization

Linear

toRGB

z

Figure 3: The AutoGAN (generator) architecture discov-
ered by AutoGAN on CIFAR-10.

The generator architecture discovered by AutoGAN on
the CIFAR-10 training set is displayed in Fig. 3. For the
task of unconditional CIFAR-10 image generation (no class
labels used), a number of notable observations could be
summarized:

• The discovered architecture has 3 convolution blocks.
AutoGAN clearly prefers pre-activation convolution
block, than post-activation convolution block.

• AutoGAN highly prefers nearest neighbour upsample
(also bilinear upsample) to deconvolution. That seems
to coincide with previous experience [45] that decon-
volution might give rise to checkboard artifacts and
nearest neighbour might thus be more favored.

• Interestingly enough, AutoGAN seems to prefer not
using any normalization.

• AutoGAN is clearly in favor of (denser) skipping con-
nections. Especially, it is able to discover medium
and long skips (skipping 2 - 4 convolutional layers),
achieving multi-scale feature fusion.

We compare AutoGAN with recently published results
by hand-crafted GANs on the CIFAR-10 dataset, in Table 2.
All results are collected from those original papers: there-
fore, they are obtained under their hand-tuned, best possible
training settings. In terms of inception score, AutoGAN is
slightly next to Progressive GAN [26], and surpasses many
latest strong competitors such as SN-GAN [42], improv-
ing MMD-GAN [56], Dist-GAN [54], MGAN [19], and
WGAN-GP [13]. In terms of FID, AutoGAN outperforms
all current state-of-the-art models. The visual examples of
CIFAR-10 generated results are shown in Fig. 4.

Note that the current search space of AutoGAN can only
cover SN-GAN, but not the others; for example, WGAN-
GP used the Wasserstein loss (with gradient clipping), and
MGAN adopts a multi-discriminator structure (while our
discriminator is very plain and not searched). By using the
same group of building blocks, AutoGAN is able to out-
perform the hand-crafted SN-GAN: that fair comparison
presents direct evidence for both the importance of genera-
tor structure, and the effectiveness of our search algorithm.

Although not equipped with any explicit model complex-
ity regularization yet, AutoGAN demonstrates the expected
model parameter efficiency from NAS. The top discovered
architecture in Fig. 3 has 1.77G FLOPs, while its perfor-
mance is clearly better than SN-GAN (1.69G FLOPs) and
comparable to Progressive GAN (6.39G FLOPs).

We also report the Inception score and FID score of the
candidate top 2 and top 3 discovered architectures in the
bottom of Tab. 2. Their corresponding architectures are
shown in Fig. 5. We can see all of our top 3 discovered
architecture achieves competitive performance with current
state-of-the-art models.



Table 1: Inception score and FID score of unconditional
image generation task on CIFAR-10. We achieve a state-of-
the-art FID score of 12.42

Method Inception score FID
DCGAN[47] 6.64± .14 -
Improved GAN[50] 6.86± .06 -
LRGAN [62] 7.17± .17 -
DFM[58] 7.72± .13 -
ProbGAN[14] 7.75 24.60
WGAN-GP, ResNet [13] 7.86± .07 -
Splitting GAN [12] 7.90± .09 -
SN-GAN [42] 8.22± .05 21.7± .01
MGAN[19] 8.33± .10 26.7
Dist-GAN [54] - 17.61± .30
Progressive GAN [26] 8.80 ± .05 -
Improving MMD GAN [56] 8.29 16.21
AutoGAN-top1 (Ours) 8.55± .10 12.42
AutoGAN-top2 8.42± .07 13.67
AutoGAN-top3 8.41± .11 13.87

Figure 4: The generated CIFAR-10 results of AutoGAN.
They are randomly sampled rather than cherry-picked.

4.2. Transferability on STL-10

The next question that we try to answer is: might the
discovered architecture overfit the dataset? In other words,
would the same architecture stay powerful, when we use
another dataset to re-train its weights (with the architec-
ture structure fixed)? To address this question, we take the
AutoGAN-discovered architecture on CIFAR-10, and re-
train its weights on the STL-10 training and unlabled set, for
the unconditional image generation task on STL-10. Note
that STL-10 has higher image resolution than CIFAR-10.

Pre-activation

ConvBlock 

with no normalization

Nearest Upsample

Pre-activation

ConvBlock 

with no normalization

Pre-activation

ConvBlock 

with no normalization

Nearest Upsample

Pre-activation

ConvBlock 

with no normalization

Pre-activation

ConvBlock 

with no normalization

Nearest Upsample

Pre-activation

ConvBlock 

with no normalization

Linear

toRGB

z

Pre-activation

ConvBlock 

with batch norm

Nearest Upsample

Pre-activation

ConvBlock 

with batch norm

Pre-activation

ConvBlock 

with no normalization

Bilinear Upsample

Pre-activation

ConvBlock 

with no normalization

Pre-activation

ConvBlock 

with no normalization

Nearest Upsample

Pre-activation

ConvBlock 

with no normalization

Linear

toRGB

z

Top 2 architecture Top 3 architecture

Figure 5: The top 2 and top 3 discovered architectures.

We compare with recently published results by hand-
crafted GANs on the STL-10 dataset, in Table 2. Our re-
sult turns out to be surprisingly encouraging: while Auto-
GAN slightly lags behinds improving MMD-GAN in terms
of inception score, it achieves the best FID result of 31.01
among all. The visual examples of STL-10 generated re-
sults are shown in Fig. 4. We expect to achieve even su-
perior results on STL-10 if we re-perform the architecture
search from the scratch, and leave it for future work.

Table 2: Inception score and FID score with unconditional
image generation on STL-10. AutoGAN uses the discov-
ered architecture on CIFAR-10.

Method Inception score FID
D2GAN [44] 7.98 -
DFM [58] 8.51± .13 -
ProbGAN[14] 8.87± .095 46.74
SN-GAN [42] 9.10± .04 40.1± .50
Dist-GAN [54] - 36.19
Improving MMD GAN [56] 9.34 37.63
AutoGAN (Ours) 9.16± .12 31.01

4.3. Ablation Study and Analysis

4.3.1 Validation of Proxy tasks

The proxy task of our method is to directly evaluate IS on
the child model of the shared GAN, which boosts the train-
ing speed dramatically. To validate the effectiveness of the



Figure 6: The generated STL-10 results of AutoGAN. They
are randomly sampled rather than cherry-picked.

designed proxy task, we train the derived architectures from
scratch for 30 epochs and evaluate their IS, using AutoGAN
on CFIAR-10. We plot the correlation between the evalua-
tion value provided by our proxy task (Proxy) and the true
evaluation (Real) in Fig. 7. We can observe a positive cor-
relation between each other, with a Spearmans rank correla-
tion coefficient of 0.779, demonstrating that the proxy task
provides a fair approximation of the true evaluation. We
can also observe that the proxy evaluation tends to underes-
timate the Inception score, because of the uncompleted and
shared training in our proxy task.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Real

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

P
ro

x
y

Figure 7: The correlation plot of real evaluation and proxy
task performance on CIFAR-10.

4.3.2 Comparing to Using FID as Reward

Besides IS, another important evaluation metric for GAN is
the FID score [50]: the smaller FID indicates better gen-

eration quality. What if we use the reciprocal of FID, in-
stead of IS, as the AutoGAN controller’s reward? To answer
this question, on CIFAR-10, we search for another model
from scratch, using the reciprocal of FID as the reward (ev-
erything else unchanged), and compare to the AutoGAN
trained with IS reward. During searching, for both models,
we evaluate both IS and FID values periodically with the
training progressing. Fig. 8 plots the curves, from which we
can see that while both rewards can increase as the search
goes on, the FID-driven search (red curves) shows compa-
rable performance with the IS-driven search (blue curves),
under both metrics. However, computing FID is more time-
consuming than calculating IS, as it requires to calculate the
co-variance and mean of large matrices. Thus, we choose
IS as the default reward for AutoGAN.

0 20 40 60 80 100
Training iterations

1

2

3

4

5

6

In
ce

p
ti

on
sc

or
e

IS-based

FID-based

0 20 40 60 80 100
Training iterations

0

50

100

150

200

250

F
ID

IS-based

FID-based

Figure 8: Comparison between using IS and FID (recipro-
cal) as the AutoGAN’s reward. The model with IS-based
reward is plotted in blue, while the one with FID-based re-
ward in red. The top figure shows both models’ IS values as
training goes on, while the bottom presents FID values.

4.3.3 Parameter dynamic-resetting

It is well known that the training process of GAN is ex-
tremely unstable and prone to mode collapse [5] after long
time training. It could be a waste of time to continue train-
ing the shared collapsed model. Hence, we introduce pa-
rameter dynamic-resetting to alleviate the issue. For com-
parison, we conduct two AutoGAN experiments on CIFAR-
10, with the parameter sharing strategy proposed in [46],
and our proposed dynamic-resetting plus parameter sharing
strategy. We evaluate IS during both training processes. As
plotted in Figure 9, we can see that they achieve comparable
performance. However, the training process with dynamic-
resetting only takes 43 hours, while it will take 72 hours
without dynamic-resetting.

4.3.4 Multi-Level Architecture Search

Our AutoGAN framework employs a multi-level architec-
ture search (MLAS) strategy by default. For compari-
son, we conduct another AutoGAN experiment on CIFAR-
10 with single-level architecture search (SLAS), where
the whole architecture will be derived through a single
controller at once. We evaluate ISs and compare with



0 10 20 30 40 50 60 70 80

Training hours

1

2

3

4

5

6

In
ce

p
ti

on
sc

or
e

with dynamic-resetting

without dynamic-resetting

Figure 9: Comparing AutoGAN with (blue) and without
(red) dynamic-resetting. Dynamic-resetting can boost train-
ing efficiency while achieving comparable performace.

the training with MLAS. We can see that SLAS obtain
high Inception score at the beginning, but the Inception
score of MLAS grows progressively and finally outperforms
SLAS. Besides, Training SLAS is much slower than train-
ing MLAS, as the generator output image will always be of
the final resolution. Figure 10 demonstrates the evident and
consistent advantages of MLAS.

0 20 40 60 80 100

Training iterations

1

2

3

4

5

6

In
ce

p
ti

on
sc

or
e

MLAS

SLAS

Figure 10: Comparison of AutoGAN with MLAS (blue
line) and SLAS (red line) training chemes.

4.3.5 Comparison to random search

We implemented the two random search algorithms in [34]:
one with weight sharing and the other without weight shar-
ing (early stopping). We re-searched AutoGAN with these
two algorithms on CIFAR-10 and constrained the searching
time for 48 hours. As a result, the discovered architecture
with weight sharing achieves IS = 8.09 and FID = 17.34,
while the other achieves IS = 7.97 and FID = 21.39. Both
are inferior to our proposed search algorithm and endorse
its effectiveness.

5. Conclusions, Limitations and Discussions
AutoGAN presents the first effort on bringing NAS into

GANs. It is able to identify highly effective architectures
on both CIFAR-10 and STL-10 datasets, achieving compet-
itive image generation results against current state-of-the-
art, hand-crafted GAN models. The ablation study further
reveals the benefit of each component.

AutoGAN appears to be more challenging than NAS for
image classification, due to the high instability and hyperpa-
rameter sensitivity of GAN training itself. Recall that at the
initial stage of AutoML, it can only design small neural net-
works that perform on par with neural networks designed by
human experts, and these results were constrained to small
academic datasets such as CIFAR-10 and Penn Treebank
[71]. Likewise, despite its preliminary success and promise,
there is undoubtedly a large room for AutoGAN to improve.

In order to make AutoGAN further more competitive
than state-of-the-art hand-designed GANs, we point out a
few specific items that call for continuing efforts:

• The current search space of AutoGAN is limited, and
some powerful GANs are excluded from the search-
able range. It needs to be enlarged with more build-
ing blocks, that prove to be effective in the GAN lit-
erature. Referring to recent GAN benchmark studies
[39, 32], we consider extending our search space with
the attention/self-attention [64], the style-based gener-
ator [27], the relativistic discriminator [25] and various
losses such as the Wasserstein loss [3], among others.

• We have not yet tested AutoGAN on higher-resolution
image synthesis so far, e.g. ImageNet. While the same
algorithm is directly applicable in principle, the com-
putational cost would become prohibitively high. For
example, the search on CIFAR-10 already takes 43
hours. The key challenge lies in how to further im-
prove the search algorithm efficiency.

As one possible strategy, NAS in image classification
typically applies transfer learning from low-resolution
images to higher resolutions [72]. It may be inter-
esting, though challenging, to see how the similar
idea will be applied to the image generation task of
GANs, since it will be more demanding in preserv-
ing/synthesizing details than classification.

• We have not unleashed the potential of searching for
better discriminators. We might formulate an alternat-
ing search between the generator and the discriminator,
which can turn AutoGAN even far more challenging.

• Eventually, AutoGAN will need the capability to in-
corporate labels, such as conditional GANs [41] and
semi-supervised GANs [50].



References
[1] Karim Ahmed and Lorenzo Torresani. MaskConnect - Con-

nectivity Learning by Gradient Descent. ECCV, cs.CV, 2018.
[2] Martin Arjovsky and Léon Bottou. Towards principled

methods for training generative adversarial networks. arXiv
preprint arXiv:1701.04862, 2017.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein generative adversarial networks. In Interna-
tional Conference on Machine Learning, pages 214–223,
2017.

[4] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing neural network architectures using rein-
forcement learning. arXiv preprint arXiv:1611.02167, 2016.

[5] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018.

[6] Andrew Brock, Theodore Lim, James M Ritchie, and Nick
Weston. Neural photo editing with introspective adversarial
networks. arXiv preprint arXiv:1609.07093, 2016.

[7] Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George
Papandreou, Barret Zoph, Florian Schroff, Hartwig Adam,
and Jon Shlens. Searching for efficient multi-scale archi-
tectures for dense image prediction. In Advances in Neural
Information Processing Systems, pages 8713–8724, 2018.

[8] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2018.

[9] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017.

[10] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A
downsampled variant of imagenet as an alternative to the ci-
far datasets. arXiv preprint arXiv:1707.08819, 2017.

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014.

[12] Guillermo L Grinblat, Lucas C Uzal, and Pablo M Granitto.
Class-splitting generative adversarial networks. arXiv
preprint arXiv:1709.07359, 2017.

[13] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
wasserstein gans. In Advances in Neural Information Pro-
cessing Systems, pages 5767–5777, 2017.

[14] Guang-He Lee Yonglong Tian Hao He, Hao Wang. Prob-
gan: Towards probabilistic gan with theoretical guarantees.
In ICLR, 2019.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European

conference on computer vision, pages 630–645. Springer,
2016.

[17] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and ac-
celeration on mobile devices. In European Conference on
Computer Vision, pages 815–832. Springer, 2018.

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, Günter Klambauer, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a
nash equilibrium. arXiv preprint arXiv:1706.08500, 12(1),
2017.

[19] Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung.
Mgan: Training generative adversarial nets with multiple
generators. 2018.

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[21] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015.

[22] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adversar-
ial networks. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5967–5976. IEEE,
2017.

[23] Yifan Jiang, Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang,
Xiaohui Shen, Jianchao Yang, Pan Zhou, and Zhangyang
Wang. Enlightengan: Deep light enhancement without
paired supervision. arXiv preprint arXiv:1906.06972, 2019.

[24] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: Ef-
ficient neural architecture search with network morphism,
2018.

[25] Alexia Jolicoeur-Martineau. The relativistic discriminator:
a key element missing from standard gan. arXiv preprint
arXiv:1807.00734, 2018.

[26] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. ICLR, 2018.

[27] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
arXiv preprint arXiv:1812.04948, 2018.

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[29] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[31] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych,
Dmytro Mishkin, and Jiřı́ Matas. Deblurgan: Blind motion
deblurring using conditional adversarial networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8183–8192, 2018.

[32] Karol Kurach, Mario Lucic, Xiaohua Zhai, Marcin Michal-
ski, and Sylvain Gelly. The gan landscape: Losses, archi-



tectures, regularization, and normalization. arXiv preprint
arXiv:1807.04720, 2018.

[33] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 105–114.
IEEE, 2017.

[34] Liam Li and Ameet Talwalkar. Random search and repro-
ducibility for neural architecture search. arXiv, 2019.

[35] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, volume 1, page 4,
2017.

[36] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan Yuille, and Li Fei-Fei. Auto-deeplab:
Hierarchical neural architecture search for semantic image
segmentation. arXiv preprint arXiv:1901.02985, 2019.

[37] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive Neural Architecture
Search. pages 19–34, 2018.

[38] H Liu, K Simonyan, Y Yang arXiv preprint arXiv
1806.09055, and 2018. Darts: Differentiable architecture
search. arxiv.org.

[39] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain
Gelly, and Olivier Bousquet. Are gans created equal? a
large-scale study. In Advances in neural information pro-
cessing systems, pages 700–709, 2018.

[40] Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. Multi-task sequence to sequence
learning. arXiv preprint arXiv:1511.06114, 2015.

[41] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

[42] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. arXiv preprint arXiv:1802.05957, 2018.

[43] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In European Con-
ference on Computer Vision, pages 483–499. Springer, 2016.

[44] Tu Nguyen, Trung Le, Hung Vu, and Dinh Phung. Dual dis-
criminator generative adversarial nets. In Advances in Neural
Information Processing Systems, pages 2670–2680, 2017.

[45] Augustus Odena, Vincent Dumoulin, and Chris Olah. De-
convolution and checkerboard artifacts. Distill, 1(10):e3,
2016.

[46] H Pham, M Y Guan, B Zoph, Q V Le, J Dean arXiv preprint
arXiv, and 2018. Efficient Neural Architecture Search via
Parameter Sharing. arxiv.org.

[47] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[48] S Reed, Z Akata, X Yan, L Logeswaran arXiv preprint arXiv,
and 2016. Generative adversarial text to image synthesis.
jmlr.org, 2016.

[49] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015.

[50] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. In Advances in Neural Information Pro-
cessing Systems, pages 2234–2242, 2016.

[51] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.

[52] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2818–2826, 2016.

[53] Dustin Tran, Rajesh Ranganath, and David M Blei. Deep and
hierarchical implicit models. CoRR, abs/1702.08896, 2017.

[54] Ngoc-Trung Tran, Tuan-Anh Bui, and Ngai-Man Cheung.
Dist-gan: An improved gan using distance constraints. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 370–385, 2018.

[55] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016.

[56] Wei Wang, Yuan Sun, and Saman Halgamuge. Improv-
ing mmd-gan training with repulsive loss function. arXiv
preprint arXiv:1812.09916, 2018.

[57] Zhangyang Wang, Shiyu Chang, Yingzhen Yang, Ding Liu,
and Thomas S Huang. Studying very low resolution recogni-
tion using deep networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
4792–4800, 2016.

[58] David Warde-Farley and Yoshua Bengio. Improving gen-
erative adversarial networks with denoising feature match-
ing.(2017). In ICLR, 2017.

[59] Ronald J Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.

[60] Lingxi Xie and Alan Yuille. Genetic cnn. In 2017 IEEE
International Conference on Computer Vision (ICCV), pages
1388–1397. IEEE, 2017.

[61] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang,
Zhe Gan, Xiaolei Huang, and Xiaodong He. Attngan: Fine-
grained text to image generation with attentional generative
adversarial networks. arXiv preprint, 2017.

[62] Jianwei Yang, Anitha Kannan, Dhruv Batra, and Devi
Parikh. Lr-gan: Layered recursive generative adver-
sarial networks for image generation. arXiv preprint
arXiv:1703.01560, 2017.

[63] Shuai Yang, Zhangyang Wang, Zhaowen Wang, Ning Xu,
Jiaying Liu, and Zongming Guo. Controllable artistic
text style transfer via shape-matching gan. arXiv preprint
arXiv:1905.01354, 2019.



[64] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena. Self-attention generative adversarial networks.
arXiv preprint arXiv:1805.08318, 2018.

[65] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xi-
aogang Wang, Xiaolei Huang, and Dimitris Metaxas. Stack-
gan++: Realistic image synthesis with stacked generative ad-
versarial networks. arXiv preprint arXiv:1710.10916, 2017.

[66] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-
gan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. In Proceedings of the IEEE
International Conference on Computer Vision, pages 5907–
5915, 2017.

[67] Xiaofeng Zhang, Zhangyang Wang, Dong Liu, and Qing
Ling. Dada: Deep adversarial data augmentation for ex-
tremely low data regime classification. In ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 2807–2811. IEEE,
2019.

[68] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-
based generative adversarial network. arXiv preprint
arXiv:1609.03126, 2016.

[69] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin
Liu. Practical block-wise neural network architecture gener-
ation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2423–2432, 2018.

[70] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks. arXiv.org, Mar. 2017.

[71] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

[72] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning Transferable Architectures for Scalable Image
Recognition. CVPR, 2018.

[73] Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight.
Transfer learning for low-resource neural machine transla-
tion. arXiv preprint arXiv:1604.02201, 2016.


